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A nominal lower bound to the mean free diffusion time at the melting point T m 
was obtained earlier which provided a factor-two type estimate for self-diffusion 
coefficients of the alkali halides, alkali metals, eight other metals, and Ar. The 
argument was based on the classical Uncertainty Principle applied to the solid 
crystal, whereby maximum-frequency phonons lose validity as collective excita- 
tions and degenerate into aperiodic, single-particle diffusive motion at the 
melting point. Because of the short time scale of this motion, the perfect-gas dif- 
fusion equation and true mass can be used to obtain the self-diffusion coefficient 
in the Debye approximation to the phonon spectrum. This result for the 
self-diffusion coefficient also yields the scale factor that determines the order of 
magnitude of liquid self-diffusion coefficients, which has long been an open 
question. The earlier theory is summarized and clarified, and the results 
extended to the more complex molecular liquids H 2 and N 2. It is also 
demonstrated that combining Lindemann's melting law with the perfect-gas 
diffusion equation estimate yields a well-known empirical expression for 
liquid-metal self-diffusion at T m. Validity of the self-diffusion estimate over a 
melting temperature range from 14 to more than 1300K and over a wide 
variety of crystals provides strong confirmation for the existence of the 
specialized diffusive motion at the melting point, as well as confirmation of a 
relation between the phonon spectrum of the solid crystal and diffusive motion 
in the melt. 

KEY WORDS: melting; melting point; phonons; self-diffusion; uncertainty 
principle. 

1. I N T R O D U C T I O N  

I t  was  p r o p o s e d  e a r l i e r  t h a t  t he  f r e q u e n c y - t i m e  U n c e r t a i n t y  P r i n c i p l e  ( U P )  

c o u l d  b e  a p p l i e d  to  z o n e - b o u n d a r y  p h o n o n s  a t  t he  m e l t i n g  p o i n t  in  t he  
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Debye approximation to phonon theory. The outcome of this application 
was a derivation of Lindemann's law of melting, as well as putative lower 
bounds on self-diffusion coefficients and ionic conductivities [ 1 4 ] .  
Estimates were obtained in the earlier work for self-diffusion coefficients of 
metals (Li, Na, K, In, Cu, Zn, Ga, Ag, Sn, Hg, and Pb) which, on average, 
were in better than factor-two agreement with experiment. Closer agree- 
ment was obtained for the interdiffusion sum for several of the alkali 
halises. Consistent agreement at this level is significant because prediction 
of a diffusion coefficient at the melting point is a particularly sensitive test; 
diffusion coefficients typically change by several orders of magnitude across 
the melting point [5]. The only low-temperature case studied in the earlier 
work was Ar, for which the lower bound self-diffusion coefficient, at about 
one-third the experimental value, was the poorest estimate found. Thus, it 
is interesting to compare the UP estimate for other low-temperature cases 
as well as more complex molecular structures. It is also of interest to know 
how the UP estimate relates to other formulas for the self-diffusion coef- 
ficient. The present article addresses both these issues by application to the 
molecular liquids H2 and N 2 and by derivation of the relation of the UP 
estimate to a well-known empirical formula for the self-diffusion coefficient 
of liquid metals discussed by Iida and Guthrie [-6]. Toward this end, a 
summary and clarification of the theory are given in the next section, 
followed by a discussion of the Iida-Guthrie empirical formula and applica- 
tion to H 2 and N 2. 

2. ZONE-BOUNDARY MODE FAILURE AND SELF-DIFFUSION 
AT THE MELTING POINT IN THE DEBYE APPROXIMATION 

We make use the classical UP in the form [7, 8] 

Acoq'~(T~ COq)~.~ 1/2 (1) 

where z(T, O)q) is the lifetime of a phonon of angular frequency O)q at tem- 
perature T due to anharmonic interactions, and A(Dq is the frequency 
uncertainty associated with a phonon of angular frequency co with 
polarization and wave vector denoted q. The uncertainty of a phonon's 
frequency must be bounded in the Debye approximation by the Debye 
(angular) frequency COD. Because of this it follows from Eq. (1) that 

(ODT(CO o, T) ~> 1/2 (2) 

An analytic estimate of the high-temperature three-phonon U-process 
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transition rate which dominates the lifetime of high-temperature phonons 
was given by Roufosse and Klemens (RK) [9]: 

2 xf2 (6rC2) 1/3 y2k B TO9 2 
Zpp(og, T) 1_ MV2OgD (3) 

In this expression, calculated for sc crystals, M is atomic mass, v is the 
Debye mean velocity (determined by the elastic constants of the crystal), 
and ~ is the Griineisen constant. 

This formula shows 1/z(o9, T) to increase monotonically with both co 
and T. Thus, z of Eq. (2) reaches its minimum value on both independent 
variables at the Debye zone boundary (zb) COo, and the melting tem- 
perature Tin, the maximum values that both these variables can have in a 
Debye solid. The frequency uncertainty cannot vanish. On the liquid side 
of the melting transition (zb) phonons are not valid excitations so we 
expect that Eq. (1) cannot be satisfied on the liquid side for zb phonons. It 
is suggested, therefore, that Eq. (1) passes through equality near or at the 
melting point for zb phonons. That is, we assert that, in the Debye 
approximation, 

1 
"~- 2o9 o (4) 

"C(OgD, Tm) 

There is some experimental evidence [-10-12] that phonon line widths due 
to anharmonicities become comparable to phonon frequencies for maxi- 
mum lattice frequency phonons. Substituting the RK transition rate from 
Eq. (3) into Eq. (4) yields Lindemann's melting law: 

VgJ3A 
ksTm~ C2 (5) 

where /1o is atomic volume, To is Debye temperature, A is atomic weight, 
and ~ 

C 2 _= (72)1/2 rc3h27ZLkff 2 (6) 

where L is Avagadro's number. As used herein, C differs from the conven- 
tional Lindemann constant [13] by a factor (k~/2L 1/3) which simplifies its 
units and makes it, in cgs units, 1.0078 times the conventional value. The 
numerical values of C were shown [ 1 ] to be in reasonable agreement with 
those inferred experimentally for a set of bcc crystals, using thermal expan- 
sion values of the Griineisen gammas and a modest adjustment to account 

840/13/3-8 
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for the difference between the bcc crystal structure and the sc structure used 
in the RK calculation. It should be noted that, although the coefficient of 
the RK transition rate is the result of strong approximations, an accurate 
value is obtainable in principle. It follows that a more accurate value of the 
Lindemann constant C can also be obtained in principle from the above 
arguments. 

The Bloch electron-phonon interaction relaxation time, subjected to 
the Heisenberg UP in the Debye approximation, leads to analogous results 
[3]. In particular, the electron-phonon relaxation time inferred from the 
high-temperature Bloch resistivity formula [13] by means of the classical 
kinetic conductivity expression can also be used in Eq. (4) to derive 
Lindemann's law. The coefficient C 2 is, of course, made up of different 
parameters (including the Fermi velocity). However, upon evaluation it is 
numerically similar to the coefficient given above as determined by the RK 
formula. The accuracy of the Bloch formula is limited by the spherical 
Fermi surface, Debye approximation, and Bloch electron-phonon interac- 
tion approximations, just as the RK result is limited by the use of spherical 
wave vector surfaces, the Debye approximation, and the approximation of 
an average Griineisen constant. It should be noted that Eq. (4) does not 
require the Lindemann hypothesis of a maximum vibrational amplitude, 
yet yields the same result. 

The interpretation posed earlier for the validity of Eq. (4) involves the 
transformation of collective phonon motion into single-particle motion at 
the melting point. That is, it is assumed that atom, ion, or molecule 
single-particle motion on the time scale (2~OD) 1, determined by Eq. (4), 
replaces motion previously described by phonon normal modes, which are 
no longer valid excitations. This single-particle motion must be localized 
since it can no longer be represented by traveling-wave normal modes and 
is no longer periodic. Thus, it can be expected to lead to or accompany loss 
of long-range order and the melting transition. Modes of lower frequency 
do not violate the UP because of the strong frequency dependence of the 
relaxation time. Hence, it is assumed that they retain their integrity until 
the melting transition is completed (and even then, some modes may exist 
in the liquid state). However, the single-particle, aperiodic motion of time 
scale (2e)D) -1 is now superimposed on the lower-frequency motion for 
which the phonon model retains some validity. On the basis of this 
heuristic model, z(co D, Tin) of Eq. (4) is identified with the mean free colli- 
sion time for the aperiodic "partially decoupled" motion that appears at Tm 
and leads to self-diffusion and (usually) expansion of the lattice. This mean 
free collision time is sufficiently short that the perfect-gas scattering law 
applies [-14]. 

Upon identifying z of Eq. (4) with single-particle random (diffusive) 



Self-Diffusion at the Melting Point 493 

motion of ions at the melting point, it can be inserted into the perfect-gas 
diffusion law O m = k B T ' c / m  to obtain 

Dm ~ 2--m -~o (7) 

Because of Eq. (2), the result given in Eq. (7) above was stated as an 
inequality 2 in the earlier work. This is not strictly correct, however, because 
the association of the high-frequency phonon motion with single-particle 
motion at the melting point is a heuristic rather than an exact step. The 
numerical results obtained earlier as well as those obtained herein 
nevertheless bear out the fulfillment of an inequality in almost all cases. 
Therefore, we will sometimes refer to Eq. (7) as a "nominal lower bound," 
as well as an approximation. It was noted earlier [-2] that h / ( 2 M )  has the 
order of magnitude of liquid self-diffusion coefficients because Tm and TD 
usually have the same order of magnitude. This is not a quantum effect; h 
appears because of the use of the Debye temperature. If the Debye fre- 
quency were used instead, h would not appear. However, this convenient 
coefficient with numerical magnitude of liquid self-diffusion coefficients 
would also not appear. The use of the true mass in Eq. (7) as opposed to 
an effective mass [,14] is discussed in Ref. 2 and is based on the short time 
scale involved as is the justification for use of the perfect-gas formula, noted 
above. 

It was found [-1, 2] that Eq. (7) predicts self-diffusion coefficients con- 
sistently close to, but somewhat less than, experiment (about a factor two 
or better) for the 11 metals listed above in Section 1 and Ar. These results 
utilized room-temperature values of TD. Since diffusion coefficients vary by 
several orders of magnitude across the melting point, this accuracy is not 
unfavorable. For  alkali halides, the interdiffusion sum of the positive and 
negative ion contributions to diffusion is given by Eq. (7) with the mass M 
replaced by the reduced mass M. With this replacement, Eq. (7) predicts 
results for NaC1, RbCI, CsC1, and NaI comparable to those for metals cited 
above [1, 2]. Because interdiffusion leads to electrical conductivity in 
molten salts, the ionic conductivity a of 18 alkali halides at Tm was 
also computed according to the above method with average accuracy of 
about 18% below the experimental values [-2]. That is, a was evaluated 
according to 

N e  2 
a = ~ ( D +  + D _ )  

2 The sense of the inequality of Eq. (12) of Ref. 2 was erroneously reversed; the expression 
should read that D is greater than or equal to the rhs. 
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The fact that these values tend to be below the experimental values is con- 
sistent with the statement given above that the numerical results of Eq. (7) 
typically display a lower-bound behavior. 

The Debye approximation to the phonon spectrum of solids is used 
exclusively in the present article. Lifting of this approximation by use of the 
true phonon spectrum and discrimination between different phonon 
polarizations is discussed in the prior work [2-4]. It is expected to be a 
formidable task requiring large-scale numerical computation on crystal 
models. 

3. EMPIRICAL FORMULA FOR LIQUID METALS 

In a recent book [6], Iida and Guthrie (IG) quote an empirical 
expression for D m of liquid metals at the melting point. Their expression is 
equivalent to 

Dm=f V1/3 cm2 .s 1 (8) 

where f has the value 3.0 • 102. In this expression, A is atomic weight, V 
is the liquid molar volume at the melting point Tm, and the explicit 
Boltzmann constant kB is inserted in Eq. (8) to render f dimensionless. 
According to IG, this relationship has been known for some time. 
Although their discussion (Sect. 7.6.2 of Ref. 6) leaves the impression that 
no theoretical basis exists for this formula, the authors have already quoted 
(Eq. 7.16 of Ref. 6) a hard-sphere theory formula due to Faber [15] which 
has this identical form for an appropriate choice of hard-sphere packing 
fraction. However, it is true that Faber's formula is partly based on 
molecular dynamics calculations (cf. Eq. 3.12 of Ref. 15) and, thus, may be 
considered quasiempirical. In their Eq. 7.17, IG evaluate Faber's formula 
at the melting point with packing fraction equal to 0.45 to obtain the 
equivalent of f =  340. Now, Faber recommended the packing fraction 
0.46, which yields f =  310, whereas the choice of 0.465 yields the precise 
f =  300 as selected by IG in their empirical expression (Eq. 7.26 of Ref. 6). 
The difference between the latter two values is not significant. 

As we now proceed to demonstrate, a theoretical basis can be iden- 
tified for Eq. (8), which is unrelated to hard-sphere theory or molecular 
dynamics. By elimination of TD between Eq. (5) and Eq. (7), one obtains 
Eq. (8) with f determined as 

hL2/3 
f - - - 2 . 7 2 3 6 •  1 (9) 

2kB C 
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Since Lindemann C's usually exceed 100 (typically 100-140), the coefficient 
f given by Eq. (9) generally underestimates the IG value of 300, again 
showing consistency with the nominal lower-bound behavior noted above. 
Using Eq. (6) for C as obtained in the derivation of Lindemann's law, the 
formula for f can be reduced further to 

L1/6 
f -  721/47C3/27 (10) 

In this form, the IG coefficient f is seen to depend only on Avagadro's and 
Griineisen's constants. Equation (10) yields the value f =  283.25/7, which 
agrees with the IG value of 300 for a 7 of 0.94. It is interesting that this is 
the gamma value for Li and is close to the values for other bcc metals, for 
which the present theory gives reasonably good agreement. It must be kept 
in mind that Eq. (3) does not account for differences in crystal structure. If 
such differences were accounted for, one would obtain different coefficients 
f for each crystal structure. Most gamma values are larger than 0.94; 
such larger values of gamma lead to smaller values of f, which again is 
consistent with the lower-bound nature of the theory. 

Table I shows four numerical examples for three liquid metals and H2, 
where f is computed from Eq. (9). Debye temperatures of Na and K, and 
of Ga, are room-temperature values from Martin [16] and Gschneidner 
[17], respectively, while that for ortho-H2 is from Egelstaffet al. [18]. The 
molar volume used for hydrogen was calculated from the solid density at 
13 K given in Ref. 19. This will introduce a modest error due to the 
difference between the solid molar volume and the liquid volume required 
by the IG formula. The true value of f will be smaller than the value given 
in Table I. The Lindemann C values were computed from Eq. (5) using the 
Debye and observed melting temperatures shown in Table I, and thus these 

Table I. Examples of the Liquid-Metal Empirical Self-Diffusion Equation 
Coefficient f Computed from Eq. (9) Based on the Perfect-Gas Self-Diffusion 

Formula and Lindemann's Melting Law a 

Species T o (K) T m (K) C (s x K) 10 2f 

Na 149 371 109 2.5 
Ga 89 303 97 2.8 
K 87 336 108 2.5 
H2 80 14 91 3.0 

a TD and Tm are the Debye and melting temperatures, respectively, and C is the experimen- 
tally determined Lindemann constant. 
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values of C may be considered experimental values. The values of f are all 
close to 300, and smaller, continuing the lower-bound behavior of the 
theory (recalling that the value for H2 is greater than it should be due to 
the use of the solid molar  volume). 

4. S E L F - D I F F U S I O N  OF H z AND N 2 

The objective of this section is to extend application of UP-phonon  
breakdown theory plus onset of single-particle diffusive motion at Tm 
beyond the species and temperature ranges considered in Refs. 1 and 2. 
Toward this end, self-diffusion coefficients at the melting point for H2 and 
N 2 a s  given by Eq. (7) are compared with experiment in Table II. The 
experimental self-diffusion coefficient and Debye temperature for ortho-H2 
(at 15 K)  are from Egelstaffet al. [18],  the self-diffusion coefficient for N 2 
at the triple point is from Hansen and McDonald  [20],  and its Debye tem- 
perature was obtained from Busch and Schade [2 t ] .  The results for RbC1 
and Cu, repeated from Ref. 1, are also shown in Table II  for comparison. 
(The sources of TD and the experimental O m for RbC1 and Cu are given 
in Ref. 1.) Again, reasonable accuracy is demonstrated and the nominal 
lower-bound behavior of the theory is confirmed for these cases. 

The factor two or better agreement between the UP  estimate and 
experiment is seen to extend across a remarkable range of temperature as 
well as types of crystals. It demonstrates a strong connection between the 
phonon spectrum of the solid crystal and the diffusive particle motion in 
the liquid at the melting point. Because the UP  estimate for O m is inversely 
proport ional  to the Debye frequency and usually up to a factor two too 
small, it follows that the use of a frequency up to a factor two smaller than 
the Debye frequency in Eq. (7) would yield agreement between theory and 

Table II. Comparison Between Theory and Experiment for Self-Diffusion 
Coefficients of Two Molecular Liquids, One Alkali Halide, and Cu 

Near the Melting Point a 

Species T m (K) To (K) Dr.(th) Dm(exp) 

H 2 14 80 2.8 4,7 
N 2 63 70 1.0 1.0 
RbCl 995 162 7.7 8.7 
Cu 1358 332 2.0 4.0 

a Self-diffusion coefficients Dm(th) are nominal lower bounds, while Dm(exp) are experimental 
values. The units are 105 cm 2.s 1. 
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experiment. It is interesting that this is the range of frequency of the trans- 
verse zb modes in most crystals, and failure of transverse modes is often 
believed to be associated with melting. 

5. CONCLUSION 

Earlier theory of breakdown of zone-boundary phonons at the melting 
point and onset of single particle motion is revisited and shown to apply 
to the molecular liquids H2 and N2 and to yield a well-known empirical 
law connecting self-diffusion of liquid metals to the melting temperature. It 
provides factor two or better agreement between experiment and theory for 
self-diffusion coefficients and related quantities over an exceptionally wide 
range of melting temperature and crystal species and type. This wide range 
of agreement supports the proposed partial model of microscopic particle 
dynamics at the melting point. It also confirms a strong relation between 
the crystal phonon spectrum on the solid side of the melting point and dif- 
fusive particle motion on the liquid side of the melting point. In addition, 
the theory yields the scale factor h/(2M) that determines the order of 
magnitude of liquid self-diffusion coefficients, which has long been an open 
question [14]. 
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